
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 82

SEMANTIC AND SYNTAX OF WEB

UTILIZINGHEX PROGRAMME
1Author- G Priyanka Jeeva Karunya, Scholar at CSE department and

2Author- Dr. Pankaj Kawadkar, Professor at CSE department both from Sri Satya Sai University

of Technology and Medical Sciences-Sehore, MP

ABSTRACT

The Semantic Web, often known as Web 3.0, is a set of standards developed by the World Wide Web Consortium

(W3C) that extends the World Wide Web... Tim Berners-Lee created the word to describe a network of data (or data

web) that computers can process—that is, one in which most of the meaning is machine-readable. Through outside

atoms, hex programs are able to model several essential extensions to ASP, and therefore are a useful application

for expressing different applications. In this paper we examine the Semantic Web Through Hex Programme. We

define semantics and syntax of hex programs and show the way they could be used in the context of the Semantic

Web. Ultimately, we clearly show the usability as well as usefulness of hex programs as well as the prototype

implementation of ours on the foundation of concrete, real world scenarios. Real-world utilizations of hex-programs

and the particular solver, showing their value and adaptability, are additionally exhibited in the theory.

Keywords - Semantic Web, Hex Programme,ASP etc.

1. INTRODUCTION

The Semantic Web initiative of the World Wide Web

Consortium (W3C) has been active for the final

couple of years and has attracted scepticism and

interest in equal measure. The effect of the Semantic

Web is actually apt to be especially strong in distance

learning, libraries as well as info management, and

collaborative research; we shall check out each.

Answer Set Programming (ASP) is actually a

program paradigm which may be utilized to represent

knowledge and also to solve information-intensive

and combinatorial issues

The Semantic Web has potential that is great, and

with direct application to the HE and FE sector.

Nevertheless, it's been a rather long time of growth

and does call for an expenditure of time, resources

and expertise. Nevertheless, the time does appear

appropriate to begin to consider how better to use the

simpler applications of the technology.

Prior to the Semantic Web can easily end up

worldwide functional, there does need to be more

often, and it must be a lot more readily accessible.

There's a unique overhead to utilizing the Semantic

Web in phrases of establishing shared vocabularies

as well as ontologies, and also in giving the correct

annotations to energy that make them

noticeable to the Semantic Web. This's a non-trivial

job and sometimes customers will sometimes not

have the time period to include things like this, or

maybe the experience to do it effectively. A missing

part of the Semantic Web is actually a simple means

supporting this, like the editors as well as resources

for the traditional Web. Unquestionably the ease of

the HTML language used in the present Web was

obviously a significant impact on the success of its

and as a way for the Semantic Web to break out from

narrow towns to common use it must deal with the

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 83

problems of making it so easy to use and accessible

to other.

ASP is actually a kind of logic programming where

rules (or maybe arguments) could be thought of as

executable specs. An ASP method doesn't listen for

queries, rather it applies all conditions recursively

until the produced knowledge doesn't evolve any

longer. When presently there are actually no more

satisfiable factors to run, the device returns the

summary of results, the so-called stable versions, or

maybe answer sets. Let us see it with a good example

about key figures.

1.1 HEX Programme

We define the syntax as well as answer set semantics

of hex plans, extending ASP with higher order

functions and strong interfacing of outside

computation solutions. While answer set semantics

for higher order logic plans has been recommended

earlier by Ross [1994], additional extension of that

proposal to accommodate outside atoms is

commercially difficult since the technique of Ross is

founded on the idea of unfounded set, which can't be

very easily generalized to this particular

environment. The strategy of ours, instead, is actually

based on a recent idea of system reduct as a result of

Faber et al. [2004], which admits an all-natural

definition of answer set semantics.

Figure 1: hex-program Concept

 We are going to discuss outside atoms like a

helpful abstraction of several extensions to

ASP including, among others, aggregates,

explanation logic atoms, or maybe agent

programs. Outside atoms thus facilitate

investigating typical qualities of such

extensions, and may function as a consistent

framework for defining semantics of more

identical extensions of ASP. Moreover, hex

programs are actually a foundation for the

handy look of generic evaluation algorithms

for this kind of extensions in this particular

framework.

 By means of hex programs, effective meta

reasoning becomes readily available in a

decidable context, e.g., for Semantic Web

applications, for meta interpretation found

ASP itself, or even for defining policy

languages. For instance, advanced closed the

definition or community reasoning of

constructs for a prolonged ontology language

(e.g., of RDF Schema) is actually well

supported. Because of the higher order

functions, the representation is actually

succinct.

 Eventually, we are going to give a

comprehensive account of strategies the best

way to calculate the answer sets of a hex

program under the state of utilizing a current

solver for conventional ASP. To this

conclusion, we'll determine structural

qualities of a hex program which will allow

us to assess it by splitting it within elements.

Furthermore, the intricacy of fixing a hex

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 84

program is surveyed.

Remember that various other logic-based

formalisms, including TRIPLE or even FLogic,

feature also higher order predicates for meta

reasoning wearing Semantic Web applications.

Nevertheless, TRIPLE is low level focused & lacks

exact semantics, while F Logic within the

implementations of its (Flora, Florid, Ontoweb)

restricts the expressiveness of its to well-founded

semantics for negation, in order to get effectiveness.

The formalism of ours, instead, is completely

declarative and presents the chance of

nondeterministic predicate characterization with

higher complexity. This proved currently helpful &

moderately effective for a range of applications with

inherent nondeterminism, like diagnosis,

preparation, or maybe configuration, and hence

offers a rich ground for integrating these places with

meta reasoning. In the course of Section 5.3, the

place we introduce by now implemented outside

atoms, a selection of illustrative examples will

present the comfort of hex programs.

2. REVIEW OF LITERATURE

Falkner et al., (2018) Automated problem solving in

conjunction with declarative specifications of search

problems have proven to considerably enhance the

implementation as well as maintenance bills along

with the man machine interaction of deployed

industrial uses. The knowledge representation as well

as reasoning (KRR) framework of solution set

programming (ASP) comes with a rich representation

language as well as high end solvers. Thus, ASP has

grown to be extremely appealing for the

representation and solving of search problems both

for business and academia. This particular post

concentrates on probably the latest manufacturing

uses of ASP.

Eiter et al., (2017) Access to outside info is actually

a crucial necessity for Answer Set Programming

(ASP), that is a booming declarative problem-solving

strategy these days. Outside access not just contains

data in formats that are several, but much more basic

also the outcomes of computations, and perhaps in a

two-way info exchange. Supplying these kinds of

access is actually a significant challenge, and

particularly in case it must be supported at a generic

level, both regarding the semantics as well as

effective computation. With this post, we think about

problem solving with ASP below outside info access

using the dlvhex system. The latter facilitates the

access through specific outside atoms, that are two-

way API like interfaces involving the rules of the

system as well as an outside source. The dlvhex

system features a flexible plugin architecture which

enables one to utilize several predefined and user

defined outside atoms which may be implemented,

e.g., in C or Python.

Jain, Sarika & Mishra Tiwari, Sanju. (2014) As a

backbone of the Semantic Web, Ontologies present a

shared comprehension of a domain name of written

text. Ontologies, with the appearance of theirs,

consumption, and classification address for concrete

ontology language which is essential for the

Semantic Web. They may be utilized to help an

excellent variety of jobs in various domains including

knowledge representation, natural language

processing, info retrieval, info exchange,

collaborative methods, databases, knowledge

management, database integration, digital libraries,

info retrieval, or maybe multi-agent methods.

Alviano, Faber and Mario, Wolfgang. (2013)

Recently, Answer Set Programming (ASP), logic

programming underneath the stable style or maybe

solution set semantics, has seen a few extensions by

generalizing the idea of an atom in these programs:

whether it is aggregate atoms, HEX atoms,

generalized quantifiers, or maybe abstract

constraints, the concept is actually having more

complex satisfaction patterns of the lattice of

Herbrand interpretations compared to conventional,

easy atoms. Within this paper we refer to any of those

constructs as generalized atoms. Many semantics

with differing attributes have been suggested for

these extensions, rendering the real picture relatively

blurry. With this paper, we examine the category of

applications which have convex generalized atoms

(originally suggested by Truszczynski and Liu) in

principle bodies and show this- Positive Many

Meanings- because of this category a lot of the

proposed semantics coincide.

Corapi et al., (2011) In this particular paper we talk

about the look of an Inductive Logic Programming

(ILP) system in Answer Set Programming (ASP) and

much more in common the issue of integrating the 2.

We show the way to formalize the learning issue as

an ASP system as well as give information on the

way the optimization features of contemporary

solvers can be adapted to derive ideal hypotheses.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 85

3. HEX PROGRAM SYNTAX

Let c, X, and G be mutually disjoint sets whose

elements are actually known as regular names,

adjustable names, and outside predicate names,

respectively. Unless explicitly specified, components

from X (resp., C) are actually denoted with original

letter in top case (resp., lower case), while

components from G are actually prefixed with &. We

remember that consistent labels work both as specific

and predicate labels.

Elements from C ∪ X are called terms. A higher-

order atom (or atom) is a tuple (Y0, Y1, . . . , Yn),

where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the

atom. Intuitively, Y0 is the predicate name, and we

thus also use the more familiar notation Y0(Y1, . . . ,

Yn). The atom is ordinary, if Y0 is a constant.

For example, (x, rdf : type, c), node(X), and D(a, b),

are atoms; the rst two are ordinary atoms.

An external atom is of the form

, (1)

where Y1, . . . , Yn and X1, . . . , Xm are two

lists of terms (called input and output lists,

respectively), and & g ∈ G is an external

predicate name. We assume that &g has xed

lengths in(&g) = n and out(&g) = m for input

and output lists, respectively. Intuitively, an

external atom provides a way for deciding the

truth value of an output tuple depending on the

extension of a set of input predicates.

Example 1 The external atom &reach [edge,

a](X) may be devised for computing the nodes

which are reachable in the graph edge from the

node a. Here, we have that in(&reach) = 2 and

out(&reach) = 1.A rule r is of the form

. (2)

where m, k ≥ 0, 𝛼1, . . . , 𝛼𝐾 are atoms, and β1, . . ., βm

are either atoms or external atoms. We deFIne H(r) =

{𝛼1, . . . , 𝛼𝐾} and B(r) = B+(r) ∪B−(r), where B+(r) =

{β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. If H(r) = ∅

and B(r) ≠ ∅, then r is a constraint, and if B(r) = ∅

and H(r) ≠∅, then r is a fact; r is ordinary, if it

contains only ordinary atoms. Note that in contrast to

dl-programs, hex-programs allow for disjunctive

heads and constraints. A hex-program is a finite set P

of rules. It is ordinary, if all rules are ordinary.

4. SEMANTICS OF HEX-PROGRAMS

We define the semantics of hex programs by

generalizing the answer set semantics by Lifschitz as

well as Gelfond. To this conclusion, we use the latest

idea of a reduct as outlined by Faber et al. (referred

to as FLP reduct henceforth) rather than to the

standard reduct by Lifschitz and Gelfond. The FLP

reduct admits a natural and elegant characterization

of answer sets for programs with aggregate atoms,

since it guarantees answer set minimality, even

though the definition depending on the standard

reduct lacks this critical element. In the sequel, allow

P be a hex program. The Herbrand platform of P,

denoted HBP, would be the set of all the potential

ground variations of atoms in addition to outside

atoms occurring in P received by replacing variables

with constants from C. The grounding of a rule r,

grnd(r), is actually defined appropriately, and also the

grounding of system P is actually provided

by𝑔𝑟𝑛𝑑(𝑃) = ⋃ 𝑟 ∈ 𝑃 𝑔𝑟𝑛𝑑(𝑟). Unless specified

C, X , and G otherwise are implicitly provided by P.

Theorem 1- The answer set semantics of hex

programs extends the answer set semantics of

average applications as outlined by Gelfond and

Lifschitz [1991], and the answer set semantics of

HiLog plans as defined by Ross [1994].

Proof. Let P be a hex program with no outside atoms.

The semantics of P directly match to the classical

answer set semantics.

The succeeding property, that is readily proved,

expresses that answer sets adhere to the concept of

minimality.

Theorem 2 Every answer set of a hex program P is

actually a little style of P.

Proof For starters, we show that a solution set A of P

is as well a version of P. This follows out of the

reality that each answer set A is actually probably a

least type of the FLP reduct of P. Hence, A must

gratify each rule r of fPA. If a principal r was

eliminated by the reduct, it's trivially satisfied by A.

As a result, A is a unit of P.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 86

Theorem 3 Let P be a hex program without not and

constraints. In the event that all outside atoms in

grnd(P) are actually monotonic family member to P,

then P has several answer set. Additionally, if P is

actually disjunction free, it's a single answer set.

Proof. A good system with just montonic outside

atoms must have an unit and therefore also a little

style. Then again, it additionally has a solution set,

since each little design is a response set.

If perhaps P is disjunction free, it's Horn and hence

should have a distinctive least model. Notice that this

particular property fails whether outside atoms might

be non-monotonic. In fact, we are able to quickly

model default negation not p(a) by an external atom

¬[p](a); the HEX-program p(a) ← ¬[p](a)

amounts then to the ordinary program p(a) ← not

p(a), that has no answer set.

5. COMPUTATION OF HEX-PROGRAMS

The strategy of ours to implementing as well as

developing a reasoner for hex programs was using

existing solvers as efficiently as you possibly can by

integrating them right into a reasoning framework,

rather than producing a model generator from

scratch. We recognized that existing

implementations of ASP reasoners employ extremely

advanced as well as techniques that are powerful,

which could be reused for this particular novel

semantics to an excellent degree. In this chapter we

current concepts as well as algorithms for fixing hex

programs.

The challenge of employing a reasoner for hex

programs lies in the interaction between outside

atoms as well as the typical part of an application.

Because of the bidirectional flow of info represented

by the input list of its, an outside atom can't be

evaluated just before the majority of the system.

Nevertheless, the presence of efficient and

established reasoners for answer set traffic programs

led us to the thought of splitting and rewriting the

application so that a current answer set solver could

be used in turn with the outside atoms' evaluation

operates. The reasoner for dl programsby now

implemented a naive model of this particular

technique, attempting to sort the application in a

stratified and an unstratified component and hence

speed up the computation. At this point, we wish to

get a far more advanced idea of processing the

system.In the subsequent subsection, we are going to

define ideal notions of dependency which allow us to

see a hex program as being a graph to be able to

recognize subgraphs with particular properties which

could be evaluated individually. This particular

dependency info is going to be not unlike the one

which was created for dl programs, but additionally

much more general, since we've to account for

disjunctive heads and also higher order syntax. As a

result, we are going to repeat the notion of

dependency at a logic plan and improve it exactly

where necessary. Additionally, we are going to

outline syntactic criteria for protection constraints of

hex programs, guaranteeing a limited reasoning

domain. In contrast to the therapy of outside

evaluations, the next element of hex programs, the

higher order syntax, doesn't include this kind of

advanced mechanisms. The notion of ours of higher

order could essentially be regarded as syntactic sugar

and converted to a first order logic software by

shifting the predicate within the tuple of debates. As

a result, it's adequate to carry out the following

replacement before any kind of system evaluation:

Each typical atom of the type p(X), the place that the

predicate sign p could additionally be a variable, is

actually replaced by a first order atom an (p, X), in

which n is actually the arity of X.

5.1 Dependency Information

To take the dependency involving bodies as well as

heads into consideration is a very common tool for

devising an operational semantics for regular logic

plans, e.g., by means of the notions of nearby

stratification or stratification, or maybe via splitting

sets or modular stratification. In contrast to the

standard meaning of dependency, like in, we've to

consider that in hex programs, dependency involving

heads as well as bodies isn't the one likely source of

interaction among predicates. Additionally,

permitting greater order atoms to possess non ground

predicates, we work with a modified notion of

dependency between atoms, taking the whole atom

and not just the predicate sign of its into

consideration. Particularly we are able to have:

Dependency between increased order atoms: For

example, p(A C(a and)) are absolutely linked.

Intuitively, since C is able to unify with the regular

sign p, rules which define C(a) might implicitly

determine the predicate p. This is not necessarily the

case: for example, rules defining the atom p(X) don't

meet up with rules determining a(X), and also H(a,

Y) doesn't meet up with H(b, Y)

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 87

Dependency through outside atoms: Outside atoms

are able to take predicate extensions as feedback: as

a result, outside atoms might count on the input

predicates of theirs. This is the sole environment

where predicate names play an unique function.

Disjunctive dependency: Atoms showing up in the

same disjunctive head have a small interaction, since

they intuitively are a means for defining a typical

nondeterministic search room.

In the following we remember the standard notion of

stratification, supplementing the definition probably

provided. A plan P is known as stratified, if there's a

partition

 (3)

such that the following conditions hold for i = 1, . . .

, n:

1. if a relation symbol r occurs positively (i.e., is

contained in a positive literal) in a rule in Pi , then

its Definition (i.e., the subset of P consisting of

all rules where r occurs in the head) within

∪𝑗≤𝑖 𝑃𝑗 .

2. if a relation symbol occurs negatively (i.e., is

contained in a negative literal) in a rule in Pi ,

then its definition is contained within ∪𝑗≤𝑖 𝑃𝑗

According to this definition, P is stratified by 𝑃1 ∪

˙ . . .∪ ˙ 𝑃𝑛 and each Pi is called a stratum of P.

Naturally, this definition is insufficient for hex-

programs, considering that not only external atoms

depend from other atoms without occurring in any

head, but also external atoms can have non-

monotonic behavior and thus must be treated like

weakly negated literals regarding stratification. We

already noted that, while theoretically an external

atom depends on the entire model(s) of the program,

in practice we can restrict the input interpretation to

specific relations.

Definition 1. Let &g be an external predicate, f&g its

evaluation function, I an interpretation, and X1, . . . ,

Xn its input list. Then &g is associated with a type

signature (t1, . . . , tn), where each ti is the type

associated with Xi and can either be c or p. If ti is c,

then we assume that Xi is a constant, otherwise we

assume that Xi is a predicate symbol. f&g depends

only on those atoms in I that have a predicate symbol

p equal to some 𝑋𝑖 ∈ 𝑋1, . . . , 𝑋𝑛 with ti = p.

In order to be able to identify a reasonable

dependency structure, In practice we do not allow to

specify variables for input terms of type p. Otherwise

the calculation of the part of the program that such an

external atom depends on would quickly become

very complex.

Definition 2. Let P be a program and a, b atoms

occurring in some rule of P. Then, a depends

positively on b (a→pb), if one of the following

conditions holds:

1. There is some rule r ∈ P such that a ∈ H(r)

and b ∈ B+(r)

Example: 𝑟1 ∶ 𝑝(𝑋) ← 𝑞(𝑋), 𝑟(𝑋).

Clearly, we have 𝑝(𝑋) → 𝑞𝑞(𝑋) 𝑎𝑛𝑑 𝑝(𝑋) →

𝑝𝑟(𝑋).

2. There are some rules r1, r2 ∈ P such that a ∈

B(r1) and b ∈ H(r2) and there exists a partial

substitution θ of variables in a such that

either aθ = b or a = bθ. E.g., H(a, Y) unifies

with p(a, X).]

Example: 𝑟1 ∶ 𝑝(𝑋) ← 𝑞(𝑋), 𝑟(𝑋).

𝑟2 ∶ 𝑞(𝑌) ← 𝑠(𝑌).

Since q(X) unifies with q(Y), we have 𝑞(𝑋) →

𝑝𝑞(𝑌).

3. There is some rule r ∈ P such that a, b ∈ H(r).

Note that this relation is symmetric.

Example: 𝑟1 ∶ 𝑝(𝑋) ∨ 𝑞(𝑋) ← 𝑟(𝑋).

From this we get 𝑝(𝑋) → 𝑝𝑞(𝑋) 𝑎𝑛𝑑 𝑞(𝑋) →

𝑝𝑝(𝑋).

Furthermore, a depends externally on b (a→eb), if

one of the following conditions holds:

1. a is an external predicate of form &𝑔[𝑋̅](𝑌̅)

with a type signature (t1, . . . , tn), where 𝑋̅ =

X1, . . . , Xn, b is of form p(𝑍̅), and, for some

i, Xi = p and ti = p.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 88

Example: 𝑟1 ∶ 𝑛𝑢𝑚(𝑁) ← &𝑐𝑜𝑢𝑛𝑡[𝑖𝑡𝑒𝑚](𝑁).

𝑟2 ∶ 𝑖𝑡𝑒𝑚(𝑋) ← 𝑝𝑎𝑟𝑡(𝑋).

Here we have &count[item](N)→e item(X), if the

input term item is of type p instead of merely

denoting a constant string.

2. There is some rule r ∈ P with a, b ∈ B(r) such

that a is an external predicate of form

&g[𝑋̅](𝑌̅) where 𝑋̅ = X1, . . . , Xn, and b is

of form p(𝑍̅), and X¯ ∩ Z¯ 6= ∅. Example:

r1 : reached(X) ← &reach[N, edge](X),

startnode(N). This causes &reach[N,

edge](X)→e startnode(N).

Moreover, a depends negatively on b (a→nb), if there

is some rule r ∈ P such that either a ∈ H(r) and b ∈

B−(r) or b is a non-monotonic external atom.

We say that a depends on b, if a→ b, where → = →p

∪ →e ∪ →n . The relation →+ denotes the transitive

closure of →. We say that a strictly depends on b, or

a 7→ b, if a→+ b, but not b 𝑏 ↛+ a.

These dependency relations let us construct a graph

GP, which we call the dependency graph of the

corresponding program P.

Definition 3 Let P be a hex-program. A dependency

graph GP of P consists of the set VP that contains all

atoms in P (i.e., the vertices of GP) and the set EP of

dependency relations contained in P according to

Definition 4.6.2 (i.e., the edges of GP).

Note that this definition is based on a non-ground

hex-program P.

Example 1 Consider the following program,

modeling the search for personal contacts that stem

from a FOAF-ontology,3 which is accessible by a

URL.

(1) 𝑢𝑟𝑙(“ℎ𝑡𝑡𝑝://𝑤𝑤𝑤. 𝑘𝑟 . 𝑡𝑢𝑤𝑖𝑒𝑛. 𝑎𝑐. 𝑎𝑡/𝑠𝑡𝑎𝑓𝑓

/𝑟𝑜𝑚𝑎𝑛/𝑓𝑜𝑎𝑓 . 𝑟𝑑𝑓 ”) ←;

(2) 𝑢𝑟𝑙(“ℎ𝑡𝑡𝑝://𝑤𝑤𝑤. 𝑚𝑎𝑡. 𝑢𝑛𝑖𝑐𝑎𝑙. 𝑖𝑡/˜𝑖𝑎𝑛𝑛𝑖

/𝑓𝑜𝑎𝑓 . 𝑟𝑑𝑓 ”) ←;

(3) ¬𝑖𝑛𝑝𝑢𝑡(𝑋) ∨ ¬𝑖𝑛𝑝𝑢𝑡(𝑌)

← 𝑢𝑟𝑙(𝑋), 𝑢𝑟𝑙(𝑌), 𝑋 6 = 𝑌 ;

(4) 𝑖𝑛𝑝𝑢𝑡(𝑋) ← 𝑛𝑜𝑡 ¬𝑖𝑛𝑝𝑢𝑡(𝑋), 𝑢𝑟𝑙(𝑋);

(5) 𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, 𝑌, 𝑍)

← &𝑟𝑑𝑓 [𝐴](𝑋, 𝑌, 𝑍), 𝑖𝑛𝑝𝑢𝑡(𝐴);

(6) 𝑛𝑎𝑚𝑒(𝑋, 𝑌)

← 𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, “ℎ𝑡𝑡𝑝://𝑥𝑚𝑙𝑛𝑠. 𝑐𝑜𝑚

/𝑓𝑜𝑎𝑓 /0 .1 /𝑛𝑎𝑚𝑒”, 𝑌);

(7) 𝑘𝑛𝑜𝑤𝑠(𝑋, 𝑌) ← 𝑛𝑎𝑚𝑒(𝐴, 𝑋), 𝑛𝑎𝑚𝑒(𝐵, 𝑌),

𝑡𝑟𝑖𝑝𝑙𝑒(𝐴, “ℎ𝑡𝑡𝑝://𝑥𝑚𝑙𝑛𝑠. 𝑐𝑜𝑚/𝑓𝑜𝑎𝑓 /0 .1

/𝑘𝑛𝑜𝑤𝑠”, 𝐵).

Probably the first 2 facts specify the URLs of the

FOAF ontologies we would like to query. Rules three

as well as four make certain that each answer set is

going to be based on an one-time URL only. Rule

five extracts all triples from an RDF file specified by

the extension of input. Rule six converts triples that

assign names to people to the predicate name. Lastly,

the final rule traverses the RDF graph to put together

the relation understands. Figure 2 displays the

dependency graph of P.

We are able to now define several structural qualities

of hex-programs.

Definition 4 Let P be a hex-program and → the

relation defined above. We say that P is

(i) nonrecursive, if → is acyclic;

(ii) stratied, if there is no cycle in →

containing some atom a and b such that

a→nb;

(iii) e-stratified, if there is no cycle in →

containing some atom a and b such that

a→eb; and

(iv) totally stratified, if it is both stratified

and e-stratified.

For example, the application in Example 1 is

completely stratified as the sole cycle is actually

brought on by the disjunction in Rule (three) and

doesn't include negation. Just before we show the

way to process the graph to be able to calculate the

answer sets of a hex program, we first have to reply

to the question how you can deal with the likely

infinite domain of a hex program.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 89

Figure 2: FOAF program graph

5.2 Infinite Domains

Provided a hex program P, its grounding grnd(P) is

actually infinite in common, as well as can't be cut

down straightforwardly to a limited portion since,

provided an outside predicate &g, the co-domain of

F&g is actually unfamiliar and perhaps infinite. It's

therefore vital that you impose 2 restrictions:

1. We think that for a single particular ground

input tuple, an outside atom just returns a

limited set of paper tuples. Or else, finiteness

might certainly not be assured,

independently of the program's structure.

2. We limit the use of outside predicates inside

a hex program in phrases of stratification to

be able to bound the selection of symbols to

be taken into consideration to a limited

number, whilst outside knowledge in terms

of new symbols can continue to be brought

into an application.

In the following, we are going to describe the next

state of detail, starting with the definition of rule

safety

Definition 5 Given a rule r, the set of safe variables

in r is the smallest set X of variables such that

(i) X appears in a positive ordinary atom in

the body of r, or

(ii) X appears in the output list of an external

atom &g[Y1, . . . , Yn](X1, . . . , Xm) in

the body of r and Y1, . . . , Yn are safe.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 90

A rule r is safe, if each variable appearing in a

negated atom and in any input list is safe, and

variables appearing in H(r) are safe.

For instance, the rule𝑟 ∶ 𝐶(𝑋) ← 𝑢𝑟𝑙(𝑈),

&𝑟𝑑𝑓 [𝑈](𝑋, “𝑟𝑑𝑓𝑠: 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓”, 𝐶) is healthy.

Intuitively, this particular notion captures those rules

for which input to outside atoms will be driven by

means of additional atoms in the identical rule.

Because of the extension of the predicate url, the

amount of pertinent ground instances of r intuitively

is limited and could be driven by repeated calls to

F&rdf.In certain instances, safety isn't sufficient for

determining finiteness of the set of pertinent symbols

to be had in account. This inspires the following

stronger notion:

Definition 6 Let r be a rule in P with external atoms

&𝑓1[𝑌̅1](𝑋̅1), . . . &𝑓𝑛[𝑌̅𝑛](𝑋̅𝑛) in B(r) and E be the set

of all variables in ∪𝑖≤𝑛 𝑌̅𝑖. Moreover, let S be the set

of atoms b ∈ B+(r) such that each atom a ∈ H(r)

strictly depends on b. Let V be the set of all variables

that occur in the ordinary atoms in S and all variables

in the output list of the external atoms in S. Let G be

the set of all predicate symbols in ∪𝑖≤𝑛 𝑌̅𝑖. Then, r is

strongly safe, iff (i) E ⊆ V and (ii) each atom a ∈ H(r)

strictly depends on all p ∈ G.

Informally, a principle is clearly safe, in case the

outside atoms of its receive the feedback of theirs

from a lower stratum of the system. By doing this,

even in case they arise in a cycle, the output can't of

theirs grow infinitely, since the dimensions of the

input of theirs is actually fixed before entering" the

cycle. The rule r above isn't really protected. In fact,

in case some outside URL invoked by means of &rdf

has several triple of form

(𝑋, “𝑟𝑑𝑓𝑠: 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓 ”, 𝑢𝑟𝑙), the extension of the

url predicate is potentially innite. The rule

𝑟′ ∶ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑂𝑓 (𝐶, 𝑋)

← 𝑢𝑟𝑙(𝑈), &𝑟𝑑𝑓 [𝑈](𝑋, “𝑟𝑑𝑓𝑠: 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓 ”, 𝐶)

is strongly safe, if url(U) does not depend transitively

on instance Of (C, X).

The strong safety condition is, anyway, only needed

for rules which are involved in cycles of →. In other

settings, the ordinary safety restriction is enough.

This leads to the following notion of a domain-

expansion safe program. Let grndU(P) be the ground

program generated from P using only the set U of

constants.

Definition 7 A hex-program P is domain-expansion

safe iff each rule r ∈ P is safe and each rule r ∈ P

containing some external atom b ∈ B(r) is strongly

safe.The following theorem states that we can

effectively reduce the grounding of domain

expansion safe programs to a finite portion.

Theorem 4 For any domain- expansion safe hex-

program P, there exists a finite set D ⊆ C such that

grndD(P) is equivalent to grndC (P) (i.e., has the same

answer sets).

Proof (sketch).

The evidence proceeds by given that, though the

Herbrand universe of P is actually in concept infinite,

just a limited set D of constants may be taken into

consideration. From D, a limited ground plan,

grndD(P), could be utilized for computing answer

sets. Provided P is actually domain expansion safe, it

could be proven that grndD(P) has the identical

answer sets as grndC(P).

A system which incrementally creates Grndd(P and

D) could be sketched as follows: We upgrade a set of

energetic regular atoms A along with a set R of

ground rules (both of them at first empty) by means

of a characteristic ins(r, A), and that is frequently

invoked over all rules 𝑟 ∈ 𝑃 until A and R achieve a

fixed point. The feature ins(r, A) is actually so that,

given a secure rule r along with a set A of atoms, it

returns the set of all the soil variations of r so that

each of its body atom an is actually either (i) such that

a ∈ A or (ii) if a is external, fa is true. D is the final

value of A, and R = grndA(P). It can be shown that

the above algorithm converges and grndD(P) ⊆ grnd

C (P). The program grndC(P) can be split into two

modules: N1 = grndD(P) and N2 = grndC(P) \

grndD(P). It holds that each answer set S of grndC(P)

is such that S = S1∪S2, where S1∈ AS(N’1) and S2 ∈

AS(N’
2). N’1is a version of N1 enriched with all the

ground facts in AS(N2). Also, we can show that the

only answer set of N2 is the empty set. From this the

proof follows.

5.3 Splitting Algorithm

Like the techniques discussed in Subsection 3.9.1,

the concept of analysis of a hexprogram relies on the

concept of splitting sets. Intuitively, provided a

system P, a splitting set S is actually a set of terrain

atoms which cause a sub program 𝑔𝑟𝑛𝑑(𝑃’) ⊂

 𝑔𝑟𝑛𝑑(𝑃) whose models𝑀 = {𝑀1, . . . , 𝑀𝑛} may be

evaluated individually. Next, a sufficient splitting

theorem shows how you can plug the designs Mi

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 91

from M into an altered version of P/P’ so that the

complete variants might be computed. At this point,

we work with a modified idea of splitting set,

accommodating non ground applications and suited

to the definition of ours of dependency graph.

Definition 8 A worldwide splitting set for a hex

program P is actually a set of atoms A appearing in

P, so that every time 𝑎 ∈ 𝐴 and a→b for several atom

b appearing in P, and then also b∈ A.

Furthermore, we determine another kind of splitting

set:

Definition 9 A local splitting set for a hex-program

P is a set of atoms A ⊆ VA, such that for each atom

a ∈ A there is no atom b ∉ A such that a→ b and b

→+ a.

Thus, contrary to a global splitting set, a local

splitting set does not necessarily include the lowest

layer of the program, but it never breaks a cycle.

Definition 10 The bottom of P w.r.t. a set of atoms A

is the set of rules 𝑏𝐴(𝑃) = {𝑟 ∈ 𝑃 | 𝐻(𝑟) ∩ 𝐴 6 =

 ∅}.

In other words, the bottom of P w.r.t. a set of atoms

A includes all those rules that define A, i.e., whose

head atoms occur in A.

Theorem 5 Let P be a hex program and permit A be

a worldwide splitting set for P. Then M is actually a

solution set of P I M is actually an answer set of P

zero, in which P zero will be the system received by

removing bA (P) from P and adding the literals in N

as facts to N and P is actually an answer set of bA(P).

Proof. The evidence is actually mutatis mutandis as

the one of Theorem 3.9.1, changing the solid reduct

by the FLP reduct.

Apart from these definitions, we'll next explain

several preparations of the initial hex program to be

able to have the ability to apply the thought of

splitting sets by processing the program's

dependency graph.

To prepare the Program

From the viewpoint of program evaluation, it turns

out to be impractical to determine the semantics of an

outside predicate by means of a Boolean feature.

Instead, we want a purposeful characterization,

which gives a set of paper tuples for a certain input

tuple. To this conclusion, we define F&g : 2HBp × D1

× · · · × Dn → 2𝑅𝑐
𝑚

 with F&g(I, y1, . . . , yn) =(x1, . .

. , xm) iff f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where

𝑅𝑐
𝑚 is the set of all tuples of arity m that can be built

with symbols from C and Di = C for 1 ≤ i ≤ n. With

this notion, we can compute the entire output of an

external atom with a ground input list.

If the input list y1, . . . , yn isn't ground in the initial

application, the restriction of domain expansion

security for hex programs guarantees that the values

of its could be driven out of the remaining rule

physique. Nevertheless, since the fundamental

concept of the algorithm of ours is usually to split up

the application along outside atoms and assess the

ensuing areas in turn, we may lose precisely this

context of an outside atom. As an example, this, let

us 1st think about the next principle from the

introduction:

𝑟𝑒𝑎𝑐ℎ𝑒𝑑(𝑋) ← &𝑟𝑒𝑎𝑐ℎ[𝑒𝑑𝑔𝑒, 𝑎](𝑋) (4)

the place that the very first input phrase is

actually of sort p, i.e., edge is actually translated

as a predicate name along with an is actually of

sort c, i.e., a constant. At this point, the

feedback is totally determined w.r.t. to an

interpretation and the outside evaluation feature

could F& reach could be evaluated with the

feedback I, edge, a (assuming I has facts about

advantage along with which have been

computed before). These days’ things aren't as

straightforward if variables are actually utilized

at the input list, as in Rule (five) of Example 1:

𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, 𝑌, 𝑍) ← &𝑟𝑑𝑓 [𝐴](𝑋, 𝑌, 𝑍), 𝑖𝑛𝑝𝑢𝑡(𝐴) (5)

Obviously, before we are able to assess this

atom the input of its must be grounded. But

since these ground values count on a predicate

which happens in the same rule frame,

feedback, we have to include an auxiliary rule

to the program:

𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, 𝑌, 𝑍) ← &𝑟𝑑𝑓 [𝐴](𝑋, 𝑌, 𝑍), 𝑖𝑛𝑝𝑢𝑡(𝐴)

rdfinp(𝐴) ← 𝑖𝑛𝑝𝑢𝑡(𝐴). (6)

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 92

Obviously, the mind predicates of such rules should

be exclusively connected with the respective outside

atom. Putting in these kinds of rules will in addition

affect GP appropriately.

We are able to generalize these auxiliary rules by the

following definition:

Definition 11 Let P be a hex-program and &g[𝑌̅](𝑋̅)

be some external atom with input list 𝑌̅occurring in a

rule r ∈ P. Then, for each such atom, a rule r&g
inp is

composed as follows:

 The head H(𝑟inp
&𝑔

) contains an atom ginp(𝑌̅)

with a fresh predicate symbol ginp.

 The body B(𝑟inp
&𝑔

) of the auxiliary rule

contains all body literals of r other than

&g[𝑌̅](𝑋̅)that have at least one variable in its

arguments (resp. in its output list if b is

another external atom) that occurs also in 𝑌̅.

For each external atom in P we can create such a rule.

We denote the set of all such rules with Pinp.

The evaluation algorithm will ensure that the

extension of ginp is known before an external atom &g

i.e., the function F&g(I, y1, . . . , yn) needs to be

evaluated. For atoms with an input list which was

currently ground in the initial application, this

extension coincides with the one this kind of input

tuple. For enter prospect lists with variables, the

extension might include much more ground tuples or

zero, each of that will be feedback to the outside

evaluation feature. Remember that there's no need to

change the initial rule. The goal of the auxiliary rules

is simply to introduce an extra advantage in the

dependency graph, giving us the chance to split the

graph there and calculate the input of the outside

atom before proceeding with the first rule itself. We

all know right now how you can put together the info

flow from the system to the outside atom. The sole

part of our interfacing machinery we're currently

lacking before we are able to process the dependency

graph is actually a method of importing the outside

evaluation consequence into the system. To this

conclusion we want another definition:

5.4 Evaluation Algorithm

The evaluation algorithm within utilizes the

following subroutines:

𝑒𝑣𝑎𝑙(𝑐𝑜𝑚𝑝, 𝐼) Computes the styles of an outside

component comp (which is actually of one of the

kinds discussed above) for the interpretation I; I is

actually added as a set of facts to each outcome model

𝑠𝑜𝑙𝑣𝑒(𝑃, 𝐼) Returns the answer sets of P ∪ A, in

which P doesn't include some outside atom and A is

actually the set of facts which corresponds to I.

Intuitively, the algorithm traverses the dependency

graph from bottom to top, slowly pruning it while

computing the respective versions. Just before

entering the loop, the auxiliary rules from Definition

10 are actually added to the application in Step (a),

followed by the identification of the dependency

graph as well as the outside components. M belongs

to the set of the present designs after each iteration,

beginning with the individual set of facts F of the

system. Step (b) singles through just about all outside

parts which don't rely on any additional atom or

maybe component, i.e., which are actually on the

bottom part of the dependency graph. Next, the

algorithm loops with all present versions M ∈ M. For

this kind of model those elements are actually

evaluated in Step (c) and also may be taken out of the

list of outside parts which are left to be resolved. In

this particular innermost loop, the outcomes of all

elements are actually built up in M’ and after that

added to M’’ Moreover, Step (d) guarantees that

almost all rules of the elements are actually taken out

of the system. M has the outcome of all parts with all

present versions. By the staying a part of the graph,

Step (e) extracts probably the largest possible

subprogram which doesn't rely on any remaining

outside component i.e., that's once again on the

bottom part of the graph. Following computing the

styles of this particular subprogram with regard to the

present consequence, it's taken out of the system resp.

the dependency graph.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 93

Algorithm 1: Dependency graph evaluation.

Essentially, the iteration traverses the system graph

by using 2 distinct evaluation capabilities each turn.

While eval solves little subprograms with outside

atoms, comp solves maximum non external

subprograms.

6. CONCLUSION

We defined the semantics of common hex programs

by generalizing the conventional answer set

semantics, defining the model of an outside atom and

making use of the FLP reduct rather than the classical

GL reduct. We've sketched common examples of the

usability of outside atoms in the domain of Semantic

Web applications, like importing and manipulation

outside theories or perhaps defining certain ontology

semantics by rules of a hex program. We then have

outlined the normal idea of computation of a hex

program, relying on the dependency info which

underlies the system. We targeted at integrating

present reasoners rather than producing a completely

brand new one and thus created a framework which

builds upon readily available answer set solver and

also the engines behind outside atoms. From this

particular viewpoint, we made an algorithm which

creates the styles of a hex program by decomposing

it and consequently calling the outside reasoners.

Additionally, we specified syntactic protection

constraints to guarantee decidability. A prototype

implementation, known as dlvhex, of the techniques

was developed, together with a selection of so-called

plugins which offer a number of outside atoms,

interfacing for example RDF repositories, DL

knowledge bases, the WordNet database or perhaps

easy, but helpful string operations. We created a

software program architecture which adheres to

prevalent software standards and also allows for fast

improvement of custom plugins.

REFERENCES

[1] Alviano, Mario & Faber, Wolfgang. (2013).

Properties of Answer Set Programming with

Convex Generalized Atoms.

[2] Banbara, Mutsunori & Soh, Takehide &

Tamura, Naoyuki & INOUE, KATSUMI &

Schaub, Torsten. (2013). Answer set

programming as a modeling language for

course timetabling. Theory and Practice of

Logic Programming. 13.

10.1017/S1471068413000495.

[3] Corapi, Domenico & Russo, Alessandra &

Lupu, Emil. (2011). Inductive Logic

Programming in Answer Set Programming.

91-97. 10.1007/978-3-642-31951-8_12.

[4] Eiter, Thomas & Ianni, Giovambattista &

Krennwallner, Thomas. (2009). Answer Set

Programming: A Primer. Lecture Notes in

Computer Science. 5689. 40-110.

10.1007/978-3-642-03754-2_2.

[5] Eiter, Thomas & Kaminski, Tobias & Redl,

Christoph & Schüller, Peter & Weinzierl,

Antonius. (2017). Answer Set Programming

with External Source Access. 10.1007/978-

3-319-61033-7_7.

[6] Falkner, Andreas & Friedrich, Gerhard &

Schekotihin, Konstantin & Taupe, Richard

& Teppan, Erich. (2018). Industrial

Applications of Answer Set Programming.

KI - Künstliche Intelligenz. 32. 1-12.

10.1007/s13218-018-0548-6.

[7] Jain, Sarika & Mishra Tiwari, Sanju. (2014).

Knowledge Representation with Ontology

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882

IJCRTN020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 94

Tools & Methodology. International Journal

of Computer Applications. 6. 975-8887.

[8] Mallat, Souheyl & Hkiri, Emna & Maraoui,

Mohsen & Zrigui, Mounir. (2015). Semantic

Network Formalism for Knowledge

Representation:. International Journal on

Semantic Web and Information Systems. 11.

64-85. 10.4018/IJSWIS.2015100103.

[9] Niepert, Mathias & Buckner, Cameron &

Allen, Colin. (2008). Answer Set

Programming on Expert Feedback to

Populate and Extend Dynamic Ontologies..

500-505.

[10] Rettinger, Achim & Lösch, Uta & Tresp,

Volker & d’Amato, Claudia & Fanizzi,

Nicola. (2012). Mining the Semantic Web.

Data Mining and Knowledge Discovery. 24.

10.1007/s10618-012-0253-2.

http://www.ijcrt.org/

