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ABSTRACT 

The Semantic Web, often known as Web 3.0, is a set of standards developed by the World Wide Web Consortium 

(W3C) that extends the World Wide Web... Tim Berners-Lee created the word to describe a network of data (or data 

web) that computers can process—that is, one in which most of the meaning is machine-readable. Through outside 

atoms, hex programs are able to model several essential extensions to ASP, and therefore are a useful application 

for expressing different applications. In this paper we examine the Semantic Web Through Hex Programme. We 

define semantics and syntax of hex programs and show the way they could be used in the context of the Semantic 

Web. Ultimately, we clearly show the usability as well as usefulness of hex programs as well as the prototype 

implementation of ours on the foundation of concrete, real world scenarios. Real-world utilizations of hex-programs 

and the particular solver, showing their value and adaptability, are additionally exhibited in the theory. 

Keywords - Semantic Web, Hex Programme,ASP etc. 

1. INTRODUCTION 

The Semantic Web initiative of the World Wide Web 

Consortium (W3C) has been active for the final 

couple of years and has attracted scepticism and 

interest in equal measure. The effect of the Semantic 

Web is actually apt to be especially strong in distance 

learning, libraries as well as info management, and 

collaborative research; we shall check out each. 

Answer Set Programming (ASP) is actually a 

program paradigm which may be utilized to represent 

knowledge and also to solve information-intensive 

and combinatorial issues 

The Semantic Web has potential that is great, and 

with direct application to the HE and FE sector. 

Nevertheless, it's been a rather long time of growth 

and does call for an expenditure of time, resources 

and expertise. Nevertheless, the time does appear 

appropriate to begin to consider how better to use the 

simpler applications of the technology. 

Prior to the Semantic Web can easily end up 

worldwide functional, there does need to be more 

often, and it must be a lot more readily accessible. 

There's a unique overhead to utilizing the Semantic 

Web in phrases of establishing shared vocabularies 

as well as ontologies, and also in giving the correct 

annotations to energy that make them  

 

noticeable to the Semantic Web. This's a non-trivial 

job and sometimes customers will sometimes not 

have the time period to include things like this, or 

maybe the experience to do it effectively. A missing 

part of the Semantic Web is actually a simple means 

supporting this, like the editors as well as resources 

for the traditional Web. Unquestionably the ease of 

the HTML language used in the present Web was 

obviously a significant impact on the success of its 

and as a way for the Semantic Web to break out from 

narrow towns to common use it must deal with the 
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problems of making it so easy to use and accessible 

to other. 

ASP is actually a kind of logic programming where 

rules (or maybe arguments) could be thought of as 

executable specs. An ASP method doesn't listen for 

queries, rather it applies all conditions recursively 

until the produced knowledge doesn't evolve any 

longer. When presently there are actually no more 

satisfiable factors to run, the device returns the 

summary of results, the so-called stable versions, or 

maybe answer sets. Let us see it with a good example 

about key figures. 

 

1.1 HEX Programme 

We define the syntax as well as answer set semantics 

of hex plans, extending ASP with higher order 

functions and strong interfacing of outside 

computation solutions. While answer set semantics 

for higher order logic plans has been recommended 

earlier by Ross [1994], additional extension of that 

proposal to accommodate outside atoms is 

commercially difficult since the technique of Ross is 

founded on the idea of unfounded set, which can't be 

very easily generalized to this particular 

environment. The strategy of ours, instead, is actually 

based on a recent idea of system reduct as a result of 

Faber et al. [2004], which admits an all-natural 

definition of answer set semantics. 

 

Figure 1: hex-program Concept 

 We are going to discuss outside atoms like a 

helpful abstraction of several extensions to 

ASP including, among others, aggregates, 

explanation logic atoms, or maybe agent 

programs. Outside atoms thus facilitate 

investigating typical qualities of such 

extensions, and may function as a consistent 

framework for defining semantics of more 

identical extensions of ASP. Moreover, hex 

programs are actually a foundation for the 

handy look of generic evaluation algorithms 

for this kind of extensions in this particular 

framework. 

 By means of hex programs, effective meta 

reasoning becomes readily available in a 

decidable context, e.g., for Semantic Web 

applications, for meta interpretation found 

ASP itself, or even for defining policy 

languages. For instance, advanced closed the 

definition or community reasoning of 

constructs for a prolonged ontology language 

(e.g., of RDF Schema) is actually well 

supported. Because of the higher order 

functions, the representation is actually 

succinct. 

 Eventually, we are going to give a 

comprehensive account of strategies the best 

way to calculate the answer sets of a hex 

program under the state of utilizing a current 

solver for conventional ASP. To this 

conclusion, we'll determine structural 

qualities of a hex program which will allow 

us to assess it by splitting it within elements. 

Furthermore, the intricacy of fixing a hex 
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program is surveyed. 

Remember that various other logic-based 

formalisms, including TRIPLE or even FLogic, 

feature also higher order predicates for meta 

reasoning wearing Semantic Web applications. 

Nevertheless, TRIPLE is low level focused & lacks 

exact semantics, while F Logic within the 

implementations of its (Flora, Florid, Ontoweb) 

restricts the expressiveness of its to well-founded 

semantics for negation, in order to get effectiveness. 

The formalism of ours, instead, is completely 

declarative and presents the chance of 

nondeterministic predicate characterization with 

higher complexity. This proved currently helpful & 

moderately effective for a range of applications with 

inherent nondeterminism, like diagnosis, 

preparation, or maybe configuration, and hence 

offers a rich ground for integrating these places with 

meta reasoning. In the course of Section 5.3, the 

place we introduce by now implemented outside 

atoms, a selection of illustrative examples will 

present the comfort of hex programs. 

2. REVIEW OF LITERATURE 

Falkner et al., (2018) Automated problem solving in 

conjunction with declarative specifications of search 

problems have proven to considerably enhance the 

implementation as well as maintenance bills along 

with the man machine interaction of deployed 

industrial uses. The knowledge representation as well 

as reasoning (KRR) framework of solution set 

programming (ASP) comes with a rich representation 

language as well as high end solvers. Thus, ASP has 

grown to be extremely appealing for the 

representation and solving of search problems both 

for business and academia. This particular post 

concentrates on probably the latest manufacturing 

uses of ASP.  

Eiter et al., (2017) Access to outside info is actually 

a crucial necessity for Answer Set Programming 

(ASP), that is a booming declarative problem-solving 

strategy these days. Outside access not just contains 

data in formats that are several, but much more basic 

also the outcomes of computations, and perhaps in a 

two-way info exchange. Supplying these kinds of 

access is actually a significant challenge, and 

particularly in case it must be supported at a generic 

level, both regarding the semantics as well as 

effective computation. With this post, we think about 

problem solving with ASP below outside info access 

using the dlvhex system. The latter facilitates the 

access through specific outside atoms, that are two-

way API like interfaces involving the rules of the 

system as well as an outside source. The dlvhex 

system features a flexible plugin architecture which 

enables one to utilize several predefined and user 

defined outside atoms which may be implemented, 

e.g., in C or Python.  

Jain, Sarika & Mishra Tiwari, Sanju. (2014) As a 

backbone of the Semantic Web, Ontologies present a 

shared comprehension of a domain name of written 

text. Ontologies, with the appearance of theirs, 

consumption, and classification address for concrete 

ontology language which is essential for the 

Semantic Web. They may be utilized to help an 

excellent variety of jobs in various domains including 

knowledge representation, natural language 

processing, info retrieval, info exchange, 

collaborative methods, databases, knowledge 

management, database integration, digital libraries, 

info retrieval, or maybe multi-agent methods.  

Alviano, Faber and Mario, Wolfgang. (2013) 

Recently, Answer Set Programming (ASP), logic 

programming underneath the stable style or maybe 

solution set semantics, has seen a few extensions by 

generalizing the idea of an atom in these programs: 

whether it is aggregate atoms, HEX atoms, 

generalized quantifiers, or maybe abstract 

constraints, the concept is actually having more 

complex satisfaction patterns of the lattice of 

Herbrand interpretations compared to conventional, 

easy atoms. Within this paper we refer to any of those 

constructs as generalized atoms. Many semantics 

with differing attributes have been suggested for 

these extensions, rendering the real picture relatively 

blurry. With this paper, we examine the category of 

applications which have convex generalized atoms 

(originally suggested by Truszczynski and Liu) in 

principle bodies and show this- Positive Many 

Meanings- because of this category a lot of the 

proposed semantics coincide.  

Corapi et al., (2011) In this particular paper we talk 

about the look of an Inductive Logic Programming 

(ILP) system in Answer Set Programming (ASP) and 

much more in common the issue of integrating the 2. 

We show the way to formalize the learning issue as 

an ASP system as well as give information on the 

way the optimization features of contemporary 

solvers can be adapted to derive ideal hypotheses. 
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3. HEX PROGRAM SYNTAX 

Let c, X, and G be mutually disjoint sets whose 

elements are actually known as regular names, 

adjustable names, and outside predicate names, 

respectively. Unless explicitly specified, components 

from X (resp., C) are actually denoted with original 

letter in top case (resp., lower case), while 

components from G are actually prefixed with &. We 

remember that consistent labels work both as specific 

and predicate labels. 

Elements from C ∪ X are called terms. A higher-

order atom (or atom) is a tuple (Y0, Y1, . . . , Yn), 

where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the 

atom. Intuitively, Y0 is the predicate name, and we 

thus also use the more familiar notation Y0(Y1, . . . , 

Yn). The atom is ordinary, if Y0 is a constant. 

For example, (x, rdf : type, c), node(X), and D(a, b), 

are atoms; the rst two are ordinary atoms.  

An external atom is of the form 

,                       (1) 

where Y1, . . . , Yn and X1, . . . , Xm are two 

lists of terms (called input and output lists, 

respectively), and & g ∈ G is an external 

predicate name. We assume that &g has xed 

lengths in(&g) = n and out(&g) = m for input 

and output lists, respectively. Intuitively, an 

external atom provides a way for deciding the 

truth value of an output tuple depending on the 

extension of a set of input predicates. 

Example 1 The external atom &reach [edge, 

a](X) may be devised for computing the nodes 

which are reachable in the graph edge from the 

node a. Here, we have that in(&reach) = 2 and 

out(&reach) = 1.A rule r is of the form 

.      (2) 

where m, k ≥ 0, 𝛼1, . . . , 𝛼𝐾  are atoms, and β1, . . ., βm 

are either atoms or external atoms. We deFIne H(r) = 

{𝛼1, . . . , 𝛼𝐾} and B(r) = B+(r) ∪B−(r), where B+(r) = 

{β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. If H(r) = ∅ 

and B(r) ≠ ∅, then r is a constraint, and if B(r) = ∅ 

and H(r) ≠∅, then r is a fact; r is ordinary, if it 

contains only ordinary atoms. Note that in contrast to 

dl-programs, hex-programs allow for disjunctive 

heads and constraints. A hex-program is a finite set P 

of rules. It is ordinary, if all rules are ordinary. 

4. SEMANTICS OF HEX-PROGRAMS  

We define the semantics of hex programs by 

generalizing the answer set semantics by Lifschitz as 

well as Gelfond. To this conclusion, we use the latest 

idea of a reduct as outlined by Faber et al. (referred 

to as FLP reduct henceforth) rather than to the 

standard reduct by Lifschitz and Gelfond. The FLP 

reduct admits a natural and elegant characterization 

of answer sets for programs with aggregate atoms, 

since it guarantees answer set minimality, even 

though the definition depending on the standard 

reduct lacks this critical element. In the sequel, allow 

P be a hex program. The Herbrand platform of P, 

denoted HBP, would be the set of all the potential 

ground variations of atoms in addition to outside 

atoms occurring in P received by replacing variables 

with constants from C. The grounding of a rule r, 

grnd(r), is actually defined appropriately, and also the 

grounding of system P is actually provided 

by𝑔𝑟𝑛𝑑(𝑃)  =  ⋃ 𝑟 ∈ 𝑃 𝑔𝑟𝑛𝑑(𝑟). Unless specified 

C, X , and G otherwise are implicitly provided by P. 

Theorem 1- The answer set semantics of hex 

programs extends the answer set semantics of 

average applications as outlined by Gelfond and 

Lifschitz [1991], and the answer set semantics of 

HiLog plans as defined by Ross [1994].  

Proof. Let P be a hex program with no outside atoms. 

The semantics of P directly match to the classical 

answer set semantics. 

The succeeding property, that is readily proved, 

expresses that answer sets adhere to the concept of 

minimality. 

Theorem 2 Every answer set of a hex program P is 

actually a little style of P. 

Proof For starters, we show that a solution set A of P 

is as well a version of P. This follows out of the 

reality that each answer set A is actually probably a 

least type of the FLP reduct of P. Hence, A must 

gratify each rule r of fPA. If a principal r was 

eliminated by the reduct, it's trivially satisfied by A. 

As a result, A is a unit of P. 
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Theorem 3 Let P be a hex program without not and 

constraints. In the event that all outside atoms in 

grnd(P) are actually monotonic family member to P, 

then P has several answer set. Additionally, if P is 

actually disjunction free, it's a single answer set. 

Proof. A good system with just montonic outside 

atoms must have an unit and therefore also a little 

style. Then again, it additionally has a solution set, 

since each little design is a response set. 

If perhaps P is disjunction free, it's Horn and hence 

should have a distinctive least model. Notice that this 

particular property fails whether outside atoms might 

be non-monotonic. In fact, we are able to quickly 

model default negation not p(a) by an external atom 

&not[p](a); the HEX-program p(a) ← &not[p](a) 

amounts then to the ordinary program p(a) ← not 

p(a), that has no answer set. 

5. COMPUTATION OF HEX-PROGRAMS 

The strategy of ours to implementing as well as 

developing a reasoner for hex programs was using 

existing solvers as efficiently as you possibly can by 

integrating them right into a reasoning framework, 

rather than producing a model generator from 

scratch. We recognized that existing 

implementations of ASP reasoners employ extremely 

advanced as well as techniques that are powerful, 

which could be reused for this particular novel 

semantics to an excellent degree. In this chapter we 

current concepts as well as algorithms for fixing hex 

programs. 

The challenge of employing a reasoner for hex 

programs lies in the interaction between outside 

atoms as well as the typical part of an application. 

Because of the bidirectional flow of info represented 

by the input list of its, an outside atom can't be 

evaluated just before the majority of the system. 

Nevertheless, the presence of efficient and 

established reasoners for answer set traffic programs 

led us to the thought of splitting and rewriting the 

application so that a current answer set solver could 

be used in turn with the outside atoms' evaluation 

operates. The reasoner for dl programsby now 

implemented a naive model of this particular 

technique, attempting to sort the application in a 

stratified and an unstratified component and hence 

speed up the computation. At this point, we wish to 

get a far more advanced idea of processing the 

system.In the subsequent subsection, we are going to 

define ideal notions of dependency which allow us to 

see a hex program as being a graph to be able to 

recognize subgraphs with particular properties which 

could be evaluated individually. This particular 

dependency info is going to be not unlike the one 

which was created for dl programs, but additionally 

much more general, since we've to account for 

disjunctive heads and also higher order syntax. As a 

result, we are going to repeat the notion of 

dependency at a logic plan and improve it exactly 

where necessary. Additionally, we are going to 

outline syntactic criteria for protection constraints of 

hex programs, guaranteeing a limited reasoning 

domain. In contrast to the therapy of outside 

evaluations, the next element of hex programs, the 

higher order syntax, doesn't include this kind of 

advanced mechanisms. The notion of ours of higher 

order could essentially be regarded as syntactic sugar 

and converted to a first order logic software by 

shifting the predicate within the tuple of debates. As 

a result, it's adequate to carry out the following 

replacement before any kind of system evaluation: 

Each typical atom of the type p(X), the place that the 

predicate sign p could additionally be a variable, is 

actually replaced by a first order atom an (p, X), in 

which n is actually the arity of X. 

5.1 Dependency Information 

To take the dependency involving bodies as well as 

heads into consideration is a very common tool for 

devising an operational semantics for regular logic 

plans, e.g., by means of the notions of nearby 

stratification or stratification, or maybe via splitting 

sets or modular stratification. In contrast to the 

standard meaning of dependency, like in, we've to 

consider that in hex programs, dependency involving 

heads as well as bodies isn't the one likely source of 

interaction among predicates. Additionally, 

permitting greater order atoms to possess non ground 

predicates, we work with a modified notion of 

dependency between atoms, taking the whole atom 

and not just the predicate sign of its into 

consideration. Particularly we are able to have: 

Dependency between increased order atoms: For 

example, p(A C(a and)) are absolutely linked. 

Intuitively, since C is able to unify with the regular 

sign p, rules which define C(a) might implicitly 

determine the predicate p. This is not necessarily the 

case: for example, rules defining the atom p(X) don't 

meet up with rules determining a(X), and also H(a, 

Y) doesn't meet up with H(b, Y) 
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Dependency through outside atoms: Outside atoms 

are able to take predicate extensions as feedback: as 

a result, outside atoms might count on the input 

predicates of theirs. This is the sole environment 

where predicate names play an unique function. 

Disjunctive dependency: Atoms showing up in the 

same disjunctive head have a small interaction, since 

they intuitively are a means for defining a typical 

nondeterministic search room. 

In the following we remember the standard notion of 

stratification, supplementing the definition probably 

provided. A plan P is known as stratified, if there's a 

partition 

                (3) 

such that the following conditions hold for i = 1, . . . 

, n: 

1. if a relation symbol r occurs positively (i.e., is 

contained in a positive literal) in a rule in Pi , then 

its Definition (i.e., the subset of P consisting of 

all rules where r occurs in the head) within 

∪𝑗≤𝑖 𝑃𝑗 . 

2. if a relation symbol occurs negatively (i.e., is 

contained in a negative literal) in a rule in Pi , 

then its definition is contained within ∪𝑗≤𝑖 𝑃𝑗 

According to this definition, P is stratified by 𝑃1 ∪

˙ . . .∪ ˙ 𝑃𝑛 and each Pi is called a stratum of P.  

Naturally, this definition is insufficient for hex-

programs, considering that not only external atoms 

depend from other atoms without occurring in any 

head, but also external atoms can have non-

monotonic behavior and thus must be treated like 

weakly negated literals regarding stratification. We 

already noted that, while theoretically an external 

atom depends on the entire model(s) of the program, 

in practice we can restrict the input interpretation to 

specific relations. 

Definition 1. Let &g be an external predicate, f&g its 

evaluation function, I an interpretation, and X1, . . . , 

Xn its input list. Then &g is associated with a type 

signature (t1, . . . , tn), where each ti is the type 

associated with Xi and can either be c or p. If ti is c, 

then we assume that Xi is a constant, otherwise we 

assume that Xi is a predicate symbol. f&g depends 

only on those atoms in I that have a predicate symbol 

p equal to some 𝑋𝑖 ∈  𝑋1, . . . , 𝑋𝑛 with ti = p. 

In order to be able to identify a reasonable 

dependency structure, In practice we do not allow to 

specify variables for input terms of type p. Otherwise 

the calculation of the part of the program that such an 

external atom depends on would quickly become 

very complex. 

Definition 2. Let P be a program and a, b atoms 

occurring in some rule of P. Then, a depends 

positively on b (a→pb), if one of the following 

conditions holds: 

 

 

1. There is some rule r ∈ P such that a ∈ H(r) 

and b ∈ B+(r) 

Example: 𝑟1 ∶  𝑝(𝑋)  ←  𝑞(𝑋), 𝑟(𝑋). 

Clearly, we have 𝑝(𝑋) → 𝑞𝑞(𝑋) 𝑎𝑛𝑑 𝑝(𝑋) →

𝑝𝑟(𝑋). 

2. There are some rules r1, r2 ∈ P such that a ∈ 

B(r1) and b ∈ H(r2) and there exists a partial 

substitution θ of variables in a such that 

either aθ = b or a = bθ. E.g., H(a, Y ) unifies 

with p(a, X).] 

Example: 𝑟1 ∶  𝑝(𝑋) ←  𝑞(𝑋), 𝑟(𝑋). 

𝑟2 ∶  𝑞(𝑌 )  ←  𝑠(𝑌 ). 

Since q(X) unifies with q(Y ), we have 𝑞(𝑋) →

𝑝𝑞(𝑌 ). 

3. There is some rule r ∈ P such that a, b ∈ H(r). 

Note that this relation is symmetric.  

Example: 𝑟1 ∶  𝑝(𝑋) ∨  𝑞(𝑋)  ←  𝑟(𝑋).  

From this we get 𝑝(𝑋) → 𝑝𝑞(𝑋) 𝑎𝑛𝑑 𝑞(𝑋) →

𝑝𝑝(𝑋). 

Furthermore, a depends externally on b (a→eb), if 

one of the following conditions holds:  

1. a is an external predicate of form &𝑔[𝑋̅](𝑌̅) 

with a type signature (t1, . . . , tn), where 𝑋̅ = 

X1, . . . , Xn, b is of form p(𝑍̅), and, for some 

i, Xi = p and ti = p.  
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Example: 𝑟1 ∶  𝑛𝑢𝑚(𝑁) ←  &𝑐𝑜𝑢𝑛𝑡[𝑖𝑡𝑒𝑚](𝑁).  

𝑟2 ∶  𝑖𝑡𝑒𝑚(𝑋)  ←  𝑝𝑎𝑟𝑡(𝑋). 

Here we have &count[item](N)→e item(X), if the 

input term item is of type p instead of merely 

denoting a constant string.  

2. There is some rule r ∈ P with a, b ∈ B(r) such 

that a is an external predicate of form 

&g[𝑋̅](𝑌̅) where 𝑋̅ = X1, . . . , Xn, and b is 

of form p(𝑍̅), and X¯ ∩ Z¯ 6= ∅. Example: 

r1 : reached(X) ← &reach[N, edge](X), 

startnode(N). This causes &reach[N, 

edge](X)→e startnode(N).  

Moreover, a depends negatively on b (a→nb), if there 

is some rule r ∈ P such that either a ∈ H(r) and b ∈ 

B−(r) or b is a non-monotonic external atom.  

We say that a depends on b, if a→ b, where → = →p 

∪ →e ∪ →n . The relation →+ denotes the transitive 

closure of →. We say that a strictly depends on b, or 

a 7→ b, if a→+ b, but not b 𝑏 ↛+ a. 

These dependency relations let us construct a graph 

GP, which we call the dependency graph of the 

corresponding program P. 

Definition 3 Let P be a hex-program. A dependency 

graph GP of P consists of the set VP that contains all 

atoms in P (i.e., the vertices of GP) and the set EP of 

dependency relations contained in P according to 

Definition 4.6.2 (i.e., the edges of GP).  

Note that this definition is based on a non-ground 

hex-program P.  

Example 1 Consider the following program, 

modeling the search for personal contacts that stem 

from a FOAF-ontology,3 which is accessible by a 

URL. 

(1) 𝑢𝑟𝑙(“ℎ𝑡𝑡𝑝://𝑤𝑤𝑤. 𝑘𝑟 . 𝑡𝑢𝑤𝑖𝑒𝑛. 𝑎𝑐. 𝑎𝑡/𝑠𝑡𝑎𝑓𝑓 

/𝑟𝑜𝑚𝑎𝑛/𝑓𝑜𝑎𝑓 . 𝑟𝑑𝑓 ”)  ←;  

(2) 𝑢𝑟𝑙(“ℎ𝑡𝑡𝑝://𝑤𝑤𝑤. 𝑚𝑎𝑡. 𝑢𝑛𝑖𝑐𝑎𝑙. 𝑖𝑡/˜𝑖𝑎𝑛𝑛𝑖

/𝑓𝑜𝑎𝑓 . 𝑟𝑑𝑓 ”)  ←; 

(3) ¬𝑖𝑛𝑝𝑢𝑡(𝑋)  ∨  ¬𝑖𝑛𝑝𝑢𝑡(𝑌 )  

←  𝑢𝑟𝑙(𝑋), 𝑢𝑟𝑙(𝑌 ), 𝑋 6 =  𝑌 ;  

(4) 𝑖𝑛𝑝𝑢𝑡(𝑋)  ←  𝑛𝑜𝑡 ¬𝑖𝑛𝑝𝑢𝑡(𝑋), 𝑢𝑟𝑙(𝑋);  

(5) 𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, 𝑌, 𝑍)  

←  &𝑟𝑑𝑓 [𝐴](𝑋, 𝑌, 𝑍), 𝑖𝑛𝑝𝑢𝑡(𝐴);  

(6) 𝑛𝑎𝑚𝑒(𝑋, 𝑌 )  

←  𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, “ℎ𝑡𝑡𝑝://𝑥𝑚𝑙𝑛𝑠. 𝑐𝑜𝑚

/𝑓𝑜𝑎𝑓 /0 .1 /𝑛𝑎𝑚𝑒”, 𝑌 );  

(7) 𝑘𝑛𝑜𝑤𝑠(𝑋, 𝑌 )  ←  𝑛𝑎𝑚𝑒(𝐴, 𝑋), 𝑛𝑎𝑚𝑒(𝐵, 𝑌 ), 

𝑡𝑟𝑖𝑝𝑙𝑒(𝐴, “ℎ𝑡𝑡𝑝://𝑥𝑚𝑙𝑛𝑠. 𝑐𝑜𝑚/𝑓𝑜𝑎𝑓 /0 .1 

/𝑘𝑛𝑜𝑤𝑠”, 𝐵). 

Probably the first 2 facts specify the URLs of the 

FOAF ontologies we would like to query. Rules three 

as well as four make certain that each answer set is 

going to be based on an one-time URL only. Rule 

five extracts all triples from an RDF file specified by 

the extension of input. Rule six converts triples that 

assign names to people to the predicate name. Lastly, 

the final rule traverses the RDF graph to put together 

the relation understands. Figure 2 displays the 

dependency graph of P.  

We are able to now define several structural qualities 

of hex-programs.  

Definition 4 Let P be a hex-program and → the 

relation defined above. We say that P is  

(i) nonrecursive, if → is acyclic;  

(ii) stratied, if there is no cycle in → 

containing some atom a and b such that 

a→nb;  

(iii) e-stratified, if there is no cycle in → 

containing some atom a and b such that 

a→eb; and  

(iv) totally stratified, if it is both stratified 

and e-stratified.  

For example, the application in Example 1 is 

completely stratified as the sole cycle is actually 

brought on by the disjunction in Rule (three) and 

doesn't include negation. Just before we show the 

way to process the graph to be able to calculate the 

answer sets of a hex program, we first have to reply 

to the question how you can deal with the likely 

infinite domain of a hex program. 
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Figure 2: FOAF program graph 

5.2 Infinite Domains 

Provided a hex program P, its grounding grnd(P) is 

actually infinite in common, as well as can't be cut 

down straightforwardly to a limited portion since, 

provided an outside predicate &g, the co-domain of 

F&g is actually unfamiliar and perhaps infinite. It's 

therefore vital that you impose 2 restrictions: 

1. We think that for a single particular ground 

input tuple, an outside atom just returns a 

limited set of paper tuples. Or else, finiteness 

might certainly not be assured, 

independently of the program's structure. 

2. We limit the use of outside predicates inside 

a hex program in phrases of stratification to 

be able to bound the selection of symbols to 

be taken into consideration to a limited 

number, whilst outside knowledge in terms 

of new symbols can continue to be brought 

into an application. 

In the following, we are going to describe the next 

state of detail, starting with the definition of rule 

safety 

Definition 5 Given a rule r, the set of safe variables 

in r is the smallest set X of variables such that 

(i) X appears in a positive ordinary atom in 

the body of r, or 

(ii) X appears in the output list of an external 

atom &g[Y1, . . . , Yn](X1, . . . , Xm) in 

the body of r and Y1, . . . , Yn are safe. 
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A rule r is safe, if each variable appearing in a 

negated atom and in any input list is safe, and 

variables appearing in H(r) are safe. 

For instance, the rule𝑟 ∶  𝐶(𝑋)  ←  𝑢𝑟𝑙(𝑈), 

&𝑟𝑑𝑓 [𝑈](𝑋, “𝑟𝑑𝑓𝑠: 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓”, 𝐶) is healthy. 

Intuitively, this particular notion captures those rules 

for which input to outside atoms will be driven by 

means of additional atoms in the identical rule. 

Because of the extension of the predicate url, the 

amount of pertinent ground instances of r intuitively 

is limited and could be driven by repeated calls to 

F&rdf.In certain instances, safety isn't sufficient for 

determining finiteness of the set of pertinent symbols 

to be had in account. This inspires the following 

stronger notion: 

Definition 6 Let r be a rule in P with external atoms 

&𝑓1[𝑌̅1](𝑋̅1), . . . &𝑓𝑛[𝑌̅𝑛](𝑋̅𝑛) in B(r) and E be the set 

of all variables in ∪𝑖≤𝑛 𝑌̅𝑖. Moreover, let S be the set 

of atoms b ∈ B+(r) such that each atom a ∈ H(r) 

strictly depends on b. Let V be the set of all variables 

that occur in the ordinary atoms in S and all variables 

in the output list of the external atoms in S. Let G be 

the set of all predicate symbols in ∪𝑖≤𝑛 𝑌̅𝑖. Then, r is 

strongly safe, iff (i) E ⊆ V and (ii) each atom a ∈ H(r) 

strictly depends on all p ∈ G. 

Informally, a principle is clearly safe, in case the 

outside atoms of its receive the feedback of theirs 

from a lower stratum of the system. By doing this, 

even in case they arise in a cycle, the output can't of 

theirs grow infinitely, since the dimensions of the 

input of theirs is actually fixed before entering" the 

cycle. The rule r above isn't really protected. In fact, 

in case some outside URL invoked by means of &rdf 

has several triple of form 

(𝑋, “𝑟𝑑𝑓𝑠: 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓 ”, 𝑢𝑟𝑙), the extension of the 

url predicate is potentially innite. The rule 

𝑟′ ∶  𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑂𝑓 (𝐶, 𝑋)  

←  𝑢𝑟𝑙(𝑈), &𝑟𝑑𝑓 [𝑈](𝑋, “𝑟𝑑𝑓𝑠: 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓 ”, 𝐶) 

is strongly safe, if url(U) does not depend transitively 

on instance Of (C, X). 

The strong safety condition is, anyway, only needed 

for rules which are involved in cycles of →. In other 

settings, the ordinary safety restriction is enough. 

This leads to the following notion of a domain-

expansion safe program. Let grndU(P) be the ground 

program generated from P using only the set U of 

constants. 

Definition 7 A hex-program P is domain-expansion 

safe iff each rule r ∈ P is safe and each rule r ∈ P 

containing some external atom b ∈ B(r) is strongly 

safe.The following theorem states that we can 

effectively reduce the grounding of domain 

expansion safe programs to a finite portion.  

Theorem 4 For any domain- expansion safe hex-

program P, there exists a finite set D ⊆ C such that 

grndD(P) is equivalent to grndC (P) (i.e., has the same 

answer sets). 

Proof (sketch).  

The evidence proceeds by given that, though the 

Herbrand universe of P is actually in concept infinite, 

just a limited set D of constants may be taken into 

consideration. From D, a limited ground plan, 

grndD(P), could be utilized for computing answer 

sets. Provided P is actually domain expansion safe, it 

could be proven that grndD(P) has the identical 

answer sets as grndC(P). 

A system which incrementally creates Grndd(P and 

D) could be sketched as follows: We upgrade a set of 

energetic regular atoms A along with a set R of 

ground rules (both of them at first empty) by means 

of a characteristic ins(r, A), and that is frequently 

invoked over all rules 𝑟 ∈  𝑃 until A and R achieve a 

fixed point. The feature ins(r, A) is actually so that, 

given a secure rule r along with a set A of atoms, it 

returns the set of all the soil variations of r so that 

each of its body atom an is actually either (i) such that 

a ∈ A or (ii) if a is external, fa is true. D is the final 

value of A, and R = grndA(P). It can be shown that 

the above algorithm converges and grndD(P) ⊆ grnd 

C (P). The program grndC(P) can be split into two 

modules: N1 = grndD(P) and N2 = grndC(P) \ 

grndD(P). It holds that each answer set S of grndC(P) 

is such that S = S1∪S2, where S1∈ AS(N’1) and S2 ∈ 

AS(N’
2). N’1is a version of N1 enriched with all the 

ground facts in AS(N2). Also, we can show that the 

only answer set of N2 is the empty set. From this the 

proof follows. 

5.3 Splitting Algorithm  

Like the techniques discussed in Subsection 3.9.1, 

the concept of analysis of a hexprogram relies on the 

concept of splitting sets. Intuitively, provided a 

system P, a splitting set S is actually a set of terrain 

atoms which cause a sub program 𝑔𝑟𝑛𝑑(𝑃’) ⊂

 𝑔𝑟𝑛𝑑(𝑃) whose models𝑀 = {𝑀1, . . . , 𝑀𝑛} may be 

evaluated individually. Next, a sufficient splitting 

theorem shows how you can plug the designs Mi 
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from M into an altered version of P/P’ so that the 

complete variants might be computed. At this point, 

we work with a modified idea of splitting set, 

accommodating non ground applications and suited 

to the definition of ours of dependency graph. 

Definition 8 A worldwide splitting set for a hex 

program P is actually a set of atoms A appearing in 

P, so that every time 𝑎 ∈ 𝐴 and a→b for several atom 

b appearing in P, and then also b∈ A. 

Furthermore, we determine another kind of splitting 

set:  

Definition 9 A local splitting set for a hex-program 

P is a set of atoms A ⊆ VA, such that for each atom 

a ∈ A there is no atom b ∉ A such that a→ b and b 

→+ a.  

Thus, contrary to a global splitting set, a local 

splitting set does not necessarily include the lowest 

layer of the program, but it never breaks a cycle.  

Definition 10 The bottom of P w.r.t. a set of atoms A 

is the set of rules 𝑏𝐴(𝑃)  =  {𝑟 ∈  𝑃 | 𝐻(𝑟)  ∩  𝐴 6 =

 ∅}.  

In other words, the bottom of P w.r.t. a set of atoms 

A includes all those rules that define A, i.e., whose 

head atoms occur in A.  

Theorem 5 Let P be a hex program and permit A be 

a worldwide splitting set for P. Then M is actually a 

solution set of P I M is actually an answer set of P 

zero, in which P zero will be the system received by 

removing bA (P) from P and adding the literals in N 

as facts to N and P is actually an answer set of bA(P). 

Proof. The evidence is actually mutatis mutandis as 

the one of Theorem 3.9.1, changing the solid reduct 

by the FLP reduct. 

Apart from these definitions, we'll next explain 

several preparations of the initial hex program to be 

able to have the ability to apply the thought of 

splitting sets by processing the program's 

dependency graph. 

To prepare the Program  

From the viewpoint of program evaluation, it turns 

out to be impractical to determine the semantics of an 

outside predicate by means of a Boolean feature. 

Instead, we want a purposeful characterization, 

which gives a set of paper tuples for a certain input 

tuple. To this conclusion, we define F&g : 2HBp × D1 

× · · · × Dn → 2𝑅𝑐
𝑚

 with F&g(I, y1, . . . , yn) =(x1, . . 

. , xm)  iff f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where 

𝑅𝑐
𝑚 is the set of all tuples of arity m that can be built 

with symbols from C and Di = C for 1 ≤ i ≤ n. With 

this notion, we can compute the entire output of an 

external atom with a ground input list. 

If the input list y1, . . . , yn isn't ground in the initial 

application, the restriction of domain expansion 

security for hex programs guarantees that the values 

of its could be driven out of the remaining rule 

physique. Nevertheless, since the fundamental 

concept of the algorithm of ours is usually to split up 

the application along outside atoms and assess the 

ensuing areas in turn, we may lose precisely this 

context of an outside atom. As an example, this, let 

us 1st think about the next principle from the 

introduction: 

𝑟𝑒𝑎𝑐ℎ𝑒𝑑(𝑋)  ←  &𝑟𝑒𝑎𝑐ℎ[𝑒𝑑𝑔𝑒, 𝑎](𝑋)       (4) 

the place that the very first input phrase is 

actually of sort p, i.e., edge is actually translated 

as a predicate name along with an is actually of 

sort c, i.e., a constant. At this point, the 

feedback is totally determined w.r.t. to an 

interpretation and the outside evaluation feature 

could F& reach could be evaluated with the 

feedback I, edge, a (assuming I has facts about 

advantage along with which have been 

computed before). These days’ things aren't as 

straightforward if variables are actually utilized 

at the input list, as in Rule (five) of Example 1: 

𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, 𝑌, 𝑍)  ←  &𝑟𝑑𝑓 [𝐴](𝑋, 𝑌, 𝑍), 𝑖𝑛𝑝𝑢𝑡(𝐴)          (5) 

Obviously, before we are able to assess this 

atom the input of its must be grounded. But 

since these ground values count on a predicate 

which happens in the same rule frame, 

feedback, we have to include an auxiliary rule 

to the program: 

𝑡𝑟𝑖𝑝𝑙𝑒(𝑋, 𝑌, 𝑍)  ←  &𝑟𝑑𝑓 [𝐴](𝑋, 𝑌, 𝑍), 𝑖𝑛𝑝𝑢𝑡(𝐴) 

rdfinp(𝐴)  ←  𝑖𝑛𝑝𝑢𝑡(𝐴).   (6) 
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Obviously, the mind predicates of such rules should 

be exclusively connected with the respective outside 

atom. Putting in these kinds of rules will in addition 

affect GP appropriately. 

We are able to generalize these auxiliary rules by the 

following definition: 

Definition 11 Let P be a hex-program and &g[𝑌̅](𝑋̅) 

be some external atom with input list 𝑌̅occurring in a 

rule r ∈ P. Then, for each such atom, a rule r&g
inp is 

composed as follows:  

 The head H(𝑟inp
&𝑔

) contains an atom ginp(𝑌̅ ) 

with a fresh predicate symbol ginp.  

 The body B(𝑟inp
&𝑔

) of the auxiliary rule 

contains all body literals of r other than 

&g[𝑌̅](𝑋̅)that have at least one variable in its 

arguments (resp. in its output list if b is 

another external atom) that occurs also in 𝑌̅.  

For each external atom in P we can create such a rule. 

We denote the set of all such rules with Pinp. 

The evaluation algorithm will ensure that the 

extension of ginp is known before an external atom &g 

i.e., the function F&g(I, y1, . . . , yn)  needs to be 

evaluated. For atoms with an input list which was 

currently ground in the initial application, this 

extension coincides with the one this kind of input 

tuple. For enter prospect lists with variables, the 

extension might include much more ground tuples or 

zero, each of that will be feedback to the outside 

evaluation feature. Remember that there's no need to 

change the initial rule. The goal of the auxiliary rules 

is simply to introduce an extra advantage in the 

dependency graph, giving us the chance to split the 

graph there and calculate the input of the outside 

atom before proceeding with the first rule itself. We 

all know right now how you can put together the info 

flow from the system to the outside atom. The sole 

part of our interfacing machinery we're currently 

lacking before we are able to process the dependency 

graph is actually a method of importing the outside 

evaluation consequence into the system. To this 

conclusion we want another definition: 

 

 

 

 

5.4 Evaluation Algorithm 

The evaluation algorithm within utilizes the 

following subroutines: 

𝑒𝑣𝑎𝑙(𝑐𝑜𝑚𝑝, 𝐼) Computes the styles of an outside 

component comp (which is actually of one of the 

kinds discussed above) for the interpretation I; I is 

actually added as a set of facts to each outcome model 

𝑠𝑜𝑙𝑣𝑒(𝑃, 𝐼) Returns the answer sets of P ∪ A, in 

which P doesn't include some outside atom and A is 

actually the set of facts which corresponds to I. 

Intuitively, the algorithm traverses the dependency 

graph from bottom to top, slowly pruning it while 

computing the respective versions. Just before 

entering the loop, the auxiliary rules from Definition 

10 are actually added to the application in Step (a), 

followed by the identification of the dependency 

graph as well as the outside components. M belongs 

to the set of the present designs after each iteration, 

beginning with the individual set of facts F of the 

system. Step (b) singles through just about all outside 

parts which don't rely on any additional atom or 

maybe component, i.e., which are actually on the 

bottom part of the dependency graph. Next, the 

algorithm loops with all present versions M ∈ M. For 

this kind of model those elements are actually 

evaluated in Step (c) and also may be taken out of the 

list of outside parts which are left to be resolved. In 

this particular innermost loop, the outcomes of all 

elements are actually built up in M’ and after that 

added to M’’ Moreover, Step (d) guarantees that 

almost all rules of the elements are actually taken out 

of the system. M has the outcome of all parts with all 

present versions. By the staying a part of the graph, 

Step (e) extracts probably the largest possible 

subprogram which doesn't rely on any remaining 

outside component i.e., that's once again on the 

bottom part of the graph. Following computing the 

styles of this particular subprogram with regard to the 

present consequence, it's taken out of the system resp. 

the dependency graph. 
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Algorithm 1: Dependency graph evaluation. 

 

Essentially, the iteration traverses the system graph 

by using 2 distinct evaluation capabilities each turn. 

While eval solves little subprograms with outside 

atoms, comp solves maximum non external 

subprograms. 

6. CONCLUSION 

We defined the semantics of common hex programs 

by generalizing the conventional answer set 

semantics, defining the model of an outside atom and 

making use of the FLP reduct rather than the classical 

GL reduct. We've sketched common examples of the 

usability of outside atoms in the domain of Semantic 

Web applications, like importing and manipulation 

outside theories or perhaps defining certain ontology 

semantics by rules of a hex program. We then have 

outlined the normal idea of computation of a hex 

program, relying on the dependency info which 

underlies the system. We targeted at integrating 

present reasoners rather than producing a completely 

brand new one and thus created a framework which 

builds upon readily available answer set solver and 

also the engines behind outside atoms. From this 

particular viewpoint, we made an algorithm which 

creates the styles of a hex program by decomposing 

it and consequently calling the outside reasoners. 

Additionally, we specified syntactic protection 

constraints to guarantee decidability. A prototype 

implementation, known as dlvhex, of the techniques 

was developed, together with a selection of so-called 

plugins which offer a number of outside atoms, 

interfacing for example RDF repositories, DL 

knowledge bases, the WordNet database or perhaps 

easy, but helpful string operations. We created a 

software program architecture which adheres to 

prevalent software standards and also allows for fast 

improvement of custom plugins. 
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